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Motivation

• Trajectory planning for connected 
autonomous vehicles remains challenging

• Optimization-based methods can generate 
smoother trajectories and take into 
account the interaction among vehicles, 
but suffer from high computational 
complexity and potential deadlocks

• Need to propose an efficient, safe, and 
coordinated multi-vehicle trajectory 
planning method
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Contributions

• Extend convex feasible set (CFS) algorithm in a distributed fashion to solve 
multi-vehicle trajectory planning problem

• Propose a deadlock resolution by changing vehicle’s desire speed

• Simulate typical driving scenarios to validate our method
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Introduction to Convex Feasible Set Algorithm
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• An optimization algorithm for real time motion planning

• Handle motion planning problems with convex objective functions and non-
convex inequality constraints

• Idea: obtain convex feasible sets within the non-convex inequality constraints

• Solve the convex subproblems iteratively until solutions converge

C. Liu, C. Lin, and M. Tomizuka, "The convex feasible set algorithm for real time optimization in motion planning", in SIAM Journal on Control and
Optimization, vol. 56, no. 4, pp. 2712-2733, Jul. 2018

https://arxiv.org/abs/1709.00627


Courtesy of C. Liu

Introduction to Convex Feasible Set Algorithm
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Pseudocode:

C. Liu, C. Lin, and M. Tomizuka, "The convex feasible set algorithm for real time optimization in motion planning", in SIAM Journal on Control and
Optimization, vol. 56, no. 4, pp. 2712-2733, Jul. 2018

https://arxiv.org/abs/1709.00627


CFS for Efficient Long Term Planning

• Stack the set of safe control (half spaces) for all time steps

• Reduce the non-convex optimization problem to a convex problem

C. Liu, C. Lin, and M. Tomizuka, "The convex feasible set algorithm for real time optimization in motion planning", in SIAM Journal on Control and
Optimization, vol. 56, no. 4, pp. 2712-2733, Jul. 2018

Introduction to Convex Feasible Set Algorithm
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https://arxiv.org/abs/1709.00627
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• 𝑖𝑖: the index of ego vehicle 

• 𝑗𝑗: the index of surrounding vehicles 

• 𝐻𝐻: the planning horizon 

• x𝑖𝑖 = [𝑥𝑥𝑖𝑖1; … ; 𝑥𝑥𝑖𝑖𝐻𝐻]: the trajectory of vehicle 𝑖𝑖 with 𝑥𝑥𝑖𝑖ℎ as 2D position at time step h

• 𝑠𝑠𝑖𝑖: the slack variable

• 𝐽𝐽𝑖𝑖(x𝑖𝑖 , 𝑠𝑠𝑖𝑖): the objective function for vehicle 𝑖𝑖

• 𝑑𝑑(�): the signed distance function, e.g., 𝑑𝑑 𝑥𝑥𝑖𝑖ℎ, 𝑥𝑥𝑗𝑗ℎ is the distance between 𝑥𝑥𝑖𝑖ℎ and 𝑥𝑥𝑗𝑗ℎ at time step ℎ

• 𝑂𝑂𝑗𝑗ℎ: boundary of vehicle j at time step h as an obstacle

CFS-DMPC
12

Notation:

C. Liu, C. Lin, and M. Tomizuka, "The convex feasible set algorithm for real time optimization in motion planning", in SIAM Journal on Control and
Optimization, vol. 56, no. 4, pp. 2712-2733, Jul. 2018

https://arxiv.org/abs/1709.00627


CFS-DMPC
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Cost function:

Total cost

Cost of trajectory 
deviation

Cost of trajectory 
acceleration

Cost of magnitude 
of slack variable

𝐽𝐽𝑖𝑖𝑜𝑜 (x𝑖𝑖) =
1
2 𝑐𝑐𝑜𝑜(x𝑖𝑖 − x𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟)T (x𝑖𝑖−x𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟) 𝐽𝐽𝑖𝑖𝑎𝑎 (x𝑖𝑖) =

1
2 𝑐𝑐𝑎𝑎(𝐀𝐀𝑖𝑖x𝑖𝑖)T (𝐀𝐀𝑖𝑖x𝑖𝑖) 𝐽𝐽𝑖𝑖𝑠𝑠 (𝑠𝑠𝑖𝑖) = 𝑐𝑐𝑠𝑠𝑠𝑠𝑖𝑖T𝑠𝑠𝑖𝑖

𝐽𝐽𝑖𝑖(x𝑖𝑖 , 𝑠𝑠𝑖𝑖) x𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟: the reference trajectory 

according to vehicle’s desired speed
𝐀𝐀𝑖𝑖 : linear operator that maps x𝑖𝑖 to the 
accelerations along the trajectory



CFS-DMPC
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Constraints:

Vehicle i
Vehicle j
Vehicle k

• Safety constraint: force each vehicle pair (i, j) to maintain a safety 
distance at every time step

• Initial position: make the planned trajectories to start as close to the 
vehicle’ current position as possible



𝜙𝜙𝑖𝑖,𝑗𝑗
ℎ,𝑘𝑘 + ∇𝜙𝜙𝑖𝑖,𝑗𝑗

ℎ,𝑘𝑘 � 𝑥𝑥𝑖𝑖ℎ − 𝑥𝑥𝑖𝑖
ℎ(𝑘𝑘) ≥ 0

with 𝜙𝜙𝑖𝑖,𝑗𝑗
ℎ,𝑘𝑘: = 𝜙𝜙 𝑥𝑥𝑖𝑖

ℎ(𝑘𝑘), �𝑂𝑂𝑗𝑗ℎ = 𝑑𝑑 𝑥𝑥𝑖𝑖
ℎ(𝑘𝑘), �𝑂𝑂𝑗𝑗ℎ − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚

for all surrounding vehicle j and time step h

CFS-DMPC
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Safety constraint:

𝜙𝜙 𝑥𝑥𝑖𝑖ℎ , �̅�𝑥𝑗𝑗ℎ = 𝑑𝑑 𝑥𝑥𝑖𝑖ℎ , �̅�𝑥𝑗𝑗ℎ − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 ≥ 0
with 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 as the safety margin

Assume vehicles are connected,
i.e., are able to share low-
bandwidth information, this is
constant

Use CFS to convexify 
the safety constraint

�𝑂𝑂𝑗𝑗ℎ



CFS-DMPC
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Initial position:

J. Chen, C. Liu, and M. Tomizuka, “Foad: Fast optimization-based autonomous driving motion planner,” in 2018 Annual American Control
Conference (ACC). IEEE, 2018, pp. 4725–4732.

𝑥𝑥ℎ 𝑥𝑥ℎ+1 𝑥𝑥𝑟𝑟𝑚𝑚𝑒𝑒

Without slack variable

𝑥𝑥ℎ 𝑥𝑥ℎ+1 𝑥𝑥𝑟𝑟𝑚𝑚𝑒𝑒

With slack variable

𝑥𝑥𝑖𝑖1 = 𝑥𝑥𝑖𝑖c + 𝑠𝑠𝑖𝑖
with 𝑥𝑥𝑖𝑖c as the current position of vehicle i

• Adding slack variable can minimize the difference between the planned 
trajectories of adjacent time steps



CFS-DMPC
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Deadlock resolution:

Criteria to change desired speed:

where x𝑖𝑖−𝑚𝑚 = [𝑥𝑥𝑖𝑖𝐻𝐻−n+1;𝑥𝑥𝑖𝑖𝐻𝐻−𝑚𝑚+2; … ; 𝑥𝑥𝑖𝑖𝐻𝐻] is the last n points of the planned 
trajectory, and 𝜖𝜖1 and 𝜖𝜖2 are tunable thresholds.  



CFS-DMPC
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Algorithm and system architecture:



CFS-DMPC
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Simulation (without tracking control):

• Unstructured env.
(point-to-point transition on a circle) • Intersection



CFS-DMPC
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Simulation (with tracking control):

• Platoon formation • Overtaking



CFS-DMPC
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Simulation (with tracking control):

• Merging • Crossing



CFS-DMPC
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Comparison on efficiency:

J. Huang and C. Liu, “Multi-car convex feasible set algorithm in trajectory planning,” in Dynamic Systems and Control Conference.
American Society of Mechanical Engineers, 2020.



CFS-DMPC
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Comparison on optimality:

J. Huang and C. Liu, “Multi-car convex feasible set algorithm in trajectory planning,” in Dynamic Systems and Control Conference American Society of
Mechanical Engineers, 2020.

Distributed MPC is
more time-efficient but
sacrifices optimality

Robustness to tracking
error, which causes lost
of optimality



CFS-DMPC
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Comparison with RVO in unstructured env.:

J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in 2008 IEEE International Conference on
Robotics and Automation. IEEE, 2008, pp. 1928–1935.

+: more time optimal
-: longer computation time
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Conclusions and Future Work

Conclusions

• Implemented CFS in distributed model predictive control for multi-vehicle 
coordination

• Proposed a deadlock resolution by changing a vehicle’s desired speed

• Simulation results showed the efficiency and robustness

Future work

• Conduct real-work experiment

• Analyze theoretical stability and robustness
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Thank you!

Q&A
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