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Safe Optimal Control Problems

Drone Delivery

Goal: Deliver a package in a moving vehicle.

Complication: Partially-observed systems; Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions?1

1Ackerman, IEEE Spectrum’ 13
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Safe Optimal Control Problems
Target Tracking

Goal: Minimize distance to a target that moves in a cluttered environment.

Complication: Partially-observed systems; Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions?1

Skydio

1Chen, Liu, Shen, IROS’ 16
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Safe Optimal Control Problems

Inspection and Maintenance

Goal: Inspect and repair facilities using onboard cameras.

Complication: Partially-observed systems; Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions?1

1Seneviratne, Dammika, et al. Acta Imeko ’18
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
control input

loss

subject to system dynamics;
safety constraints.

e.g., tracking error
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
ut

T−1∑
t=0

xt+1Qx⊤
t+1 + utRu⊤

t

subject to xt+1 = Atxt + Btut + wt ,

yt = Ctxt + et ;
xt ∈ St , ut ∈ Ut .

known system matrices

constraints
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
ut

T−1∑
t=0

xt+1Qx⊤
t+1 + utRu⊤

t

subject to xt+1 = Atxt + Btut + wt ,

yt = Ctxt + et ;
xt ∈ St , ut ∈ Ut .

known system matrices

polytopic constraints
for simplicity



Safe Control of Partially-Observed Linear Time-Varying Systems

Zhou and Tzoumas Safe Control of Partially-Observed Linear Time-Varying Systems with Minimal Worst-Case Dynamic Regret 3/14

All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
u

x⊤Qx + u⊤Ru

subject to x = ZAx + ZBu + w,

y = Cx + e;

H
[

x
u

]
≤ h,

where:

x ≜


x0
x1
. . .

xT−1

 , u ≜


u0
x1
. . .

uT−1

 , w ≜


x0
w1
. . .

wT−2

 , y ≜


y0
y1
. . .

yT−1

 , e ≜


e0
e1
. . .

eT−1

 , ...
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
u

x⊤Qx + u⊤Ru

subject to x = ZAx + ZBu + w,

y = Cx + e;

H
[

x
u

]
≤ h,

and where: A ≜ blkdiag (A0, A1, . . . , AT−2, 0), B ≜ blkdiag (B0, B1, . . . , BT−2, 0),

C ≜ blkdiag (C0, C1, . . . , CT−1), Z ≜


0 0 . . . 0

I
. . . . . .

...
...

. . . . . . 0
0 . . . I 0

.

Z ≜


0 0 . . . 0

I
. . . . . .

...
...

. . . . . . 0
0 . . . I 0

 ,
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
u

x⊤Qx + u⊤Ru

subject to x = ZAx + ZBu + w,

y = Cx + e;

H
[

x
u

]
≤ h,

Difficulty:
The system is partially-observed;
The noise w and e can be unknown and unstructured.
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Definition (Dynamic Regret)
Assume a lookahead time horizon of operation T , and loss functions ct , t = 1, . . . , T. Then,
dynamic regret is defined as

RegretT (w, e, u) =
(
x⊤Qx + u⊤Ru

)
−

(
x∗⊤Qx∗ + u∗⊤Ru∗

)
,

where x∗ and u∗ are the optimal trajectory and control input in hindsight given the noise
realization due to u.

Remark:
The dynamic regret is sublinear if limT→∞

RegretT
T → 0, which implies

ct (xt+1, ut)− ct
(
x∗

t+1, u∗
t
)
→ 0 as T →∞.



Suboptimality Metric against Optimal Control Policies in Hindsight

2Goel et al., ’20; Sabag et al., ACC ’21; Goel et al., L4DC ’21; Martin et al., L4DC ’22; Didier et al., L-CSS
’22; ...
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Definition (Worst-Case Dynamic Regret)
The worst-case-regret is defined as

Worst-Case-RegretT (u) ≜ max
∥w∥2

2 + ∥e∥2
2 ≤ r2

RegretT (w, e, u),

where r is a given positive number.

Remark:
The worst-case dynamic regret provides a robust performance guarantee by assuming the
worst-case noise.2
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Problem
Find control u for the partially-observed LTV system that minimizes worst-case dynamic regret
subject to safety constraints, i.e.,

min
u

Worst-Case-RegretT (u)

subject to x = ZAx + ZBu + w,

y = Cx + e;

H
[

x
u

]
≤ h.

(1)

Remark: The problem generalizes to the partially-observable case the optimal control problem
in Goel et al., ’20; Sabag et al., ACC ’21; Martin et al., L4DC ’22; Didier et al., L-CSS ’22.



Control Policy for Partially-Observed Linear Systems
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Output-Feedback control policy:

ut =
t∑

k=0
Kt,kyk , t ∈ {0, . . . , T − 1},

where Kt,k are control gains to be designed.

Compact form:
u = Ky,

where

K ≜


K0,0 0 . . . 0
K1,0 K1,1

. . . ...
...

... . . . 0
KT−1,0 KT−1,1 . . . KT−1,T−1

 .



Assumptions
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Assumption (Bounded Noise)
w ∈W ≜ {w | Hw w ≤ hw} and e ∈ E ≜ {e | Hee ≤ he} with Hw , He , hw, and he given.

Remark:
We assume no stochastic model for the noise w and e: the noise may even be adversarial.

Example:
Wind disturbances of bounded magnitude, whose evolution may not be governed by a
known stochastic model.
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Regret Optimal Control3

selects control inputs over a lookahead horizon;
assumes worst-case noise.
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Regret Optimal Control3

selects control inputs over a lookahead horizon;
assumes worst-case noise.

Online Learning for Control4

selects control inputs based on past information only;
consider non-stochastic noise.
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Regret Optimal Control3

selects control inputs over a lookahead horizon;
assumes worst-case noise.

Online Learning for Control4

selects control inputs based on past information only;
consider non-stochastic noise.

BUT:
considers no safety constraints or
considers fully-observed systems.
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Proposition
There exists a lower triangular block-matrix K = Φue −Φuw Φ−1

xw Φxe such that[
x
u

]
=

[
Φxw Φxe
Φuw Φue

] [
w
e

]
,

holds true if and only if Φxw , Φxe , Φuw , and Φue are:
lower triangular block-matrices; and
lie in the affine subspace [

I−ZA −ZB
]

Φ =
[

I 0
]

,

Φ
[

I−ZA
−C

]
=

[
I
0

]
,

where Φ ≜

[
Φxw Φxe
Φuw Φue

]
is the response matrix.
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Proposition
There exists a lower triangular block-matrix K = Φue −Φuw Φ−1

xw Φxe such that[
x
u

]
=

[
Φxw Φxe
Φuw Φue

] [
w
e

]
,

holds true if and only if Φxw , Φxe , Φuw , and Φue are:
lower triangular block-matrices; and
lie in the affine subspace [

I−ZA −ZB
]

Φ =
[

I 0
]

,

Φ
[

I−ZA
−C

]
=

[
I
0

]
,

where Φ ≜

[
Φxw Φxe
Φuw Φue

]
is the response matrix.


convex constraints on Φ



Semi-Definite Program Reformulation
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Theorem
The problem in eq. (1) is equivalent to the Semi-Definite Program

min
Φ, Z , λ

λ subject to:

Φxw , Φxe , Φuw , Φue being lower block triangular;[
I−ZA−ZB

]
Φ =

[
I 0

]
, Φ

[
I−ZA
−C

]
=

[
I
0

]
,

Z⊤
[

hw
he

]
≤ h, HΦ = Z⊤

[
Hw 0
0 He

]
, Zij ≥ 0;

λ > 0,

[
I D

1
2 Φ

Φ⊤D
1
2 λI + (Φc)⊤DΦc

]
⪰ 0,

(2)

where D ≜ blkdiag(Q,R), Z are the dual variables, Φc is the response corresponding to the
optimal clairvoyant controller.
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change variables
from K to Φ


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from K to Φ


use duality for

safety constriants


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Theorem
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min
Φ, Z , λ
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Φxw , Φxe , Φuw , Φue being lower block triangular;[
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[
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Φ⊤D
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where D ≜ blkdiag(Q,R), Z are the dual variables, Φc is the response corresponding to the
optimal clairvoyant controller.
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from K to Φ


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
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{ Generalization of steps in
Goe et al., L4DC ‘21 and
Martin et al., L4DC ‘22





Algorithm

Initialization: Time horizon T ; system matrices {A,B, C}; cost matrices Q and R; noise’s
domain sets W and E; upper bound r to the noise’ total magnitude.

Output: Output-feedback control gains K.

1 {Φxw , Φxe , Φuw , Φue} ← Solve the Semi-Definite Program in eq. (2);

2 K ← Φue −Φuw Φ−1
xw Φxe .

Zhou and Tzoumas Safe Control of Partially-Observed Linear Time-Varying Systems with Minimal Worst-Case Dynamic Regret 11/14
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Numerical Evaluation on Synthetic Partially-Observed LTV Systems

5Anderson et al., ARC ’19, Martin et al., L4DC ’22
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Setup:
linear system:

At = 0.85

 0.7 0.2 0
0.3 0.7 −0.1
0 −0.2 0.8

 , Bt =

 1 0.2
2 0.3

1.5 0.5

 , Ct =



[
1 0 0
0 1 0

]
, t = {1, 3, . . .};

[
0 1 0
0 0 1

]
, t = {2, 4, . . .},

−13×1 ≤ wt ≤ 13×1 and −13×1 ≤ et ≤ 13×1 sampled from various distributions;
safety constraints: −5× 13×1 ≤ xt ≤ 5× 13×1, and −5× 13×1 ≤ ut ≤ 5× 13×1;
quadratic loss function: ct(xt+1, ut) = ∥xt+1∥2 + ∥ut∥2;
total iteration T = {2, . . . , 30};
comparison with safe H2 and H∞.5
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Result:
Our method lies between H2 and H∞ under Gaussian and worst-case noise;
Our method outperforms H2 and H∞ under all other noise;

Gaussian Uniform Gamma Exponential 

Bernoulli Weibull Poisson Worst-case



Numerical Evaluation on Synthetic Partially-Observed LTV Systems

Zhou and Tzoumas Safe Control of Partially-Observed Linear Time-Varying Systems with Minimal Worst-Case Dynamic Regret 12/14

Setup:
linear system:

At = 1.05

 0.7 0.2 0
0.3 0.7 −0.1
0 −0.2 0.8

 , Bt =

 1 0.2
2 0.3

1.5 0.5

 , Ct =



[
1 0 0
0 1 0

]
, t = {1, 3, . . .};

[
0 1 0
0 0 1

]
, t = {2, 4, . . .},

−13×1 ≤ wt ≤ 13×1 and −13×1 ≤ et ≤ 13×1 sampled from various distributions;
safety constraints: −30× 13×1 ≤ xt ≤ 30× 13×1, and
−30× 13×1 ≤ ut ≤ 30× 13×1;
quadratic loss function: ct(xt+1, ut) = ∥xt+1∥2 + ∥ut∥2;
total iteration T = {2, . . . , 30};
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Result:
Our method lies between H2 and H∞ under all tested noise.

Gaussian Uniform Gamma Exponential 

Bernoulli Weibull Poisson Worst-case



Numerical Evaluation on Hovering Quadrotor
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Setup:
linearized quadrotor system:

At =
[

I3 0.1× I3
03 I3

]
, Bt =


− 4.91

100 0 0
0 4.91

100 0
0 0 1

200
− 98.1

100 0 0
0 98.1

100 0
0 0 1

10

 ., Ct =


[

I3 03
]

, t = {1, 4, . . .},[
03 I3

]
, t = {2, 3, 5, 6 . . .}.

−0.1× 13×1 ≤ wt ≤ 0.1× 13×1 and −0.1× 13×1 ≤ et ≤ 0.1× 13×1 sampled
from various distributions;
safety constraints: −5× 13×1 ≤ xt ≤ 5× 13×1, and [−π − π − 20]⊤ ≤ ut
≤ [π π 20]⊤;
quadratic loss function: ct(xt+1, ut) = ∥xt+1∥2 + ∥ut∥2;
total iteration T = {2, . . . , 25};
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Result:
Our method lies between H2 and H∞ under all tested noise.

Gaussian Uniform Gamma Exponential 

Bernoulli Weibull Poisson Worst-case



Summary

5Zhou, Song, and Tzoumas. Safe Non-Stochastic Control of Control-Affine Systems: An Online Convex
Optimization Approach, IEEE Robotics and Automation Letters (RA-L) ’23
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Regret optimal control algorithm that
guarantees safety for partially-observed linear time-varying systems, and
provides worst-case dynamic regret performance guarantees.

Next steps:
unknown Ct over horizon T ;
safe non-linear control;5

distributed multi-robot systems.
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