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Safe Non-Stochastic Control Problems

Drone Delivery

Goal: Deliver a package in a moving vehicle.

Complication: Unpredictable wind and wake disturbances.

Problem: How can the drone choose collision-free optimal control actions?1

1Ackerman, IEEE Spectrum’ 13
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Safe Non-Stochastic Control Problems

Inspection and Maintenance

Goal: Inspect and repair facilities using onboard cameras.

Complication: Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions?1

1Seneviratne, Dammika, et al. Acta Imeko ’18
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Safe Non-Stochastic Control Problems
Target Tracking

Goal: Minimize distance to a target that moves in a cluttered environment.

Complication: Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions?1

Skydio

1Chen, Liu, Shen, IROS’ 16
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
control input

loss

subject to system dynamics;
safety constraints.

(1)

e.g., tracking error
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
ut

T∑
t=1

ct (xt+1, ut)

subject to xt+1 = Atxt + Btut + wt ;
xt ∈ St , ut ∈ Ut .

(1)
known system matrices

constraints
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All above scenarios are optimal control problems with safety constraints

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min
ut

T∑
t=1

ct (xt+1, ut)

subject to xt+1 = Atxt + Btut + wt ;
xt ∈ St ≜ {x | Lx ,tx ≤ lx ,t},

ut ∈ Ut ≜ {u | Lu,tu ≤ lu,t}.

(1)

known system matrices

polytopic constraints
for simplicityDifficulty:

The noise wt can be unknown and unstructured, instead of Gaussian.



Limitation of Classical Control Approaches

The ideal approach would give suboptimality guarantees against
the optimal method in hindsight for any noise realization.
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Classical control approaches can be too optimistic or
too pessimistic against unknown and unstructured noise

Pessimistic

H∞
(Assumes worst-case noise)

Optimistic

H2
(Assumes Gaussian noise)

Ideal

(No noise assumptions)
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Classical control approaches can be too optimistic or
too pessimistic against unknown and unstructured noise

Pessimistic

H∞
(Assumes worst-case noise)

Optimistic

H2
(Assumes Gaussian noise)

Ideal

(No noise assumptions)



Suboptimality Metric against Optimal Control Policies in Hindsight
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Definition (Dynamic Regret)
Assume a lookahead time horizon of operation T , and loss functions ct , t = 1, . . . , T. Then,
dynamic regret is defined as

Regret-NSCD
T =

T∑
t=1

ct (xt+1, ut) −
T∑

t=1
ct

(
x∗

t+1, u∗
t
)

, (2)

where x∗
t and u∗

t are the optimal trajectory and control input in hindsight given the noise
realization due to {u1, . . . , uT }.

Remark:
The dynamic regret is sublinear if limT→∞

Regret-NSCD
T

T → 0, which implies
ct (xt+1, ut) − ct

(
x∗

t+1, u∗
t
)

→ 0 as T → ∞.
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Problem
Assume the initial state of the system is safe, i.e., x0 ∈ S0. At each t = 1, . . . , T,

first a control input ut ∈ Ut is chosen;
then, a noise wt ∈ Rdx is revealed and the system evolves to state xt+1 ∈ St+1;
the controller suffers a loss ct(xt+1, ut).

The goal is to guarantee xt+1 ∈ St+1 and ut ∈ Ut for all t and that minimize

Regret-NSCD
T =

T∑
t=1

ct (xt+1, ut) −
T∑

t=1
ct

(
x∗

t+1, u∗
t
)

.



Control Policy for Linear Systems

2Gradu et al., L4DC ’23
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Linear-Feedback control policy:

ut = −Ktxt − K s
t xt , where Kt is to be designed such that

∥Kt∥ ≤ κ,

∥Ktxt∥ ≤ γ,

given K s
t that is sequentially stabilizing,2 and desired κ > 0 and γ > 0.

Compact domain set
Bounded state



Assumptions
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Assumption (Bounded Noise)
wt ∈ W ≜ {w | ∥w∥ ≤ W } where W is given.

Remark:
We assume no stochastic model for the process noise wt : the noise may even be
adversarial, subject to the bound W .

Example:
Wind and wake disturbances of bounded magnitude, whose evolution may not be
governed by a known stochastic model.



Assumptions

3Agarwal et al., ICML ’19; Hazan et al., ALT ’20; Li et al., AAAI ’21; Zhao et al., AISTATS ’22; Gradu et
al., L4DC ’23; Zhou et al., CDC ’23; ...
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Assumption (Convex and Bounded Loss Function with Bounded Gradient)
The loss function ct(xt+1, ut) : Rdx × Rdu 7→ R is convex in xt+1 and ut . Further, when ∥x∥
and ∥u∥ are bounded, then |ct(x , u)|, ∥∇xct(x , u)∥, and ∥∇uct(x , u)∥ are also bounded.

Example:
Quadratic cost ct (xt+1, ut) = xt+1Qx⊤

t+1 + utRu⊤
t .

Remark:
The above are standard assumptions in the literature of non-stochastic control.3



Closest Related Work

4Goel et al., ’20; Sabag et al., ACC ’21; Goel et al., L4DC ’21; Martin et al., L4DC ’22; Didier et al., L-CSS
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Regret Optimal Control4

selects control inputs over a lookahead horizon;
guarantees satisfaction of time-varying safety constraints BUT:

assuming a worst-case noise.
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Regret Optimal Control4

selects control inputs over a lookahead horizon;
guarantees satisfaction of time-varying safety constraints BUT:

assuming a worst-case noise.

Online Learning for Control5

selects control inputs based on past information only;
consider non-stochastic noise BUT:

considers no safety constraints or
considers time-invariant safety constraints with static regret guarantee.



Algorithm: Safe Online Gradient Descent (Safe-OGD)

Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret

Initialisation: Time horizon T , step size η, domain set K1, and K1 ∈ K1.

At each iteration t = 1, . . . , T :
1 Output ut = −Ktxt ;
2 Observe state xt+1 and noise wt = xt+1 − Atxt − Btut ;
3 Suffer the loss ct(xt+1, ut);
4 Express the loss function in Kt as ft(Kt);
5 Obtain gradient ∇K ft(Kt) and update K ′

t+1 = Kt − η∇K ft(Kt);
6 Obtain domain set Kt+1 and project Kt+1 = ΠKt+1(K ′

t+1);
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The loss function ct (xt+1, ut) : Rdx × Rdu → R is convex in Kt .
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We guarantee xt+1 ∈ St+1 and ut ∈ Ut at each time step t by choosing Kt ∈ Kt , where
Kt ≜ {K | − Lx ,tBtKxt ≤ lx ,t − Lx ,tAtxt − W ∥Lx ,t∥,

− Lu,tKxt ≤ lu,t , ∥K∥ ≤ κ, ∥Kxt∥ ≤ γ}.



Dynamic Regret Analysis

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems 11/15

Theorem (Dynamic Regret Bound of Safe-OGD)

Safe-OGD with step size η = O
(
1/

√
T

)
achieves

RegretD
T ≤ O

(√
T (1 + CT + ST )

)
,

where
CT ≜

∑T
t=2 ∥K ∗

t−1 − K ∗
t ∥F;

ST ≜
∑T

t=1
∥∥ΠKt (K ′

t+1) − ΠKt+1(K ′
t+1)

∥∥
F.

Captures how fast K ∗
t changes

Captures how fast Kt changes



Near-Optimality Under Time-Invariant Domain Set

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems 12/15

Corollary
When K1 = · · · = KT , Safe-OGD with step size η = O

(
1/

√
T

)
achieves:

RegretD
T ≤ O

(√
T (1 + CT + ��ZZST )

)
.

ST = 0 when K1 = · · · = KT since ST ≜
∑T

t=1
∥∥ΠKt (K ′

t+1) − ΠKt+1(K ′
t+1)

∥∥
F



Near-Optimality Under Time-Invariant Domain Set

Comparison with OGD
OGD with step size η = O

(
1/

√
T

)
achieves the dynamic regret bound6

RegretD
T ≤ O

(√
T (1 + CT )

)
.

The above bound is near-optimal compared to the optimal bound Ω
(√

T (1 + CT )
)
.7

6Zinkevich, ICML ’03
7Zhang et al.„ NurIPS ’18
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Corollary
When K1 = · · · = KT , Safe-OGD with step size η = O

(
1/

√
T

)
achieves:

RegretD
T ≤ O

(√
T (1 + CT )

)
.



Optimality Against Time-Invariant Optimal Controller
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Corollary
When K1 = · · · = KT and K ⋆

1 = · · · = K ⋆
T , Safe-OGD with step size η = O

(
1/

√
T

)
achieves:

RegretD
T ≤ O

(√
T

(
1 + ��ZZCT

))
.

CT = 0 when K ⋆
1 = · · · = K ⋆

T since CT ≜
∑T

t=2 ∥K ∗
t−1 − K ∗

t ∥F



Optimality Against Time-Invariant Optimal Controller

Remark:
Safe-OGD converges asymptotically to the optimal controller since limT→∞

RegretD
T

T → 0.

Example:
In the Linear–Quadratic–Gaussian control setting,

xt+1 = Atxt + Btut + wt ,

yt = xt ,
(3)

Safe-OGD converges to the optimal linear feedback controller ut = −K ∗xt .
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Corollary
When K1 = · · · = KT and K ⋆

1 = · · · = K ⋆
T , Safe-OGD with step size η = O

(
1/

√
T

)
achieves:

RegretD
T ≤ O

(√
T

)
.



Numerical Evaluation

8Anderson et al., ARC ’19, Martin et al., L4DC ’22
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Setup:
linear system: xt+1 = Axt + But + wt with xt ∈ R6 and ut ∈ R3;
∥wt∥ ≤ 0.1 sampled from various distributions;
safety constraints: −16×1 ≤ xt ≤ 16×1, and [−π − π − 20]⊤ ≤ ut ≤ [π π 20]⊤;
quadratic loss function: ct(xt+1, ut) = ∥xt+1∥2 + ∥ut∥2;
total iteration T = 500
comparison with safe H2 and H∞ with lookahead horizon N = 1, 5, 10.8

Kt needs to be chosen from time-varying Kt even the safety constraints are time-
invariant, since Kt depends on time-varying xt , i.e.,

Kt ≜ {K | − Lx ,tBtKxt ≤ lx ,t − Lx ,tAtxt − W ∥Lx ,t∥,

− Lu,tKxt ≤ lu,t , ∥K∥ ≤ κ, ∥Kxt∥ ≤ γ}.



Numerical Evaluation
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Table: Comparison in terms of cumulative loss.

Noise Distribution Ours
N = 1 N = 5 N = 10

H2 H∞ H2 H∞ H2 H∞

Gaussian 44.05 61.81 93.44 47.96 52.03 30.66 48.69
Uniform 151.49 724.98 1859.61 331.32 323.42 100.21 53.86
Gamma 159.21 811.09 2082.12 372.52 364.26 112.90 60.77

Beta 186.98 836.41 2152.63 386.30 375.73 116.70 62.40
Exponential 126.69 552.73 1421.90 259.82 250.76 79.25 44.35

Weibull 195.71 873.09 2246.31 405.70 392.94 122.63 65.86

Average 142.50 643.35 1642.67 300.60 293.19 93.72 55.99
Standard Deviation 53.92 307.00 814.06 134.16 128.60 34.53 8.43

Lower Loss
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Table: Blue corresponds to best runtime; red corresponds to worse runtime.

Noise Distribution Ours N = 1 N = 5 N = 10

H2 H∞ H2 H∞ H2 H∞

Average 0.1484 0.3712 0.6429 0.6033 1.3693 1.3854 17.0248
Standard Deviation 0.0342 0.0143 0.0116 0.0282 0.2741 0.0673 0.3691

Faster
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Table: Blue corresponds to best runtime; red corresponds to worse runtime.

Noise Distribution Ours N = 1 N = 5 N = 10

H2 H∞ H2 H∞ H2 H∞

Average 0.1484 0.3712 0.6429 0.6033 1.3693 1.3854 17.0248
Standard Deviation 0.0342 0.0143 0.0116 0.0282 0.2741 0.0673 0.3691

Best on Average



Summary

8Zhou, and Tzoumas. Safe Non-Stochastic Control of Linear Dynamical Systems, arXiv:2308.12395
9Zhou, Song, and Tzoumas. Safe Non-Stochastic Control of Control-Affine Systems: An Online Convex

Optimization Approach, IEEE Robotics and Automation Letters (RA-L) ’23
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Online learning for control algorithm that
guarantees safety despite non-stochastic disturbances, and
provides dynamic regret performance guarantees under time-varying constraints.

Next steps:
optimality of the regret bounds;
recursive feasibility;8

safe non-linear control.9
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