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Safe Non-Stochastic Control Problems

Drone Delivery

Goal: Deliver a package in a moving vehicle.

Complication: Unpredictable wind and wake disturbances.

Problem: How can the drone choose collision-free optimal control actions??

! Ackerman, IEEE Spectrum’ 13

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems



Safe Non-Stochastic Control Problems

Drone Delivery

Goal: Deliver a package in a moving vehicle.

Cﬁq‘\" <ET —

- Ry

N

Complication: Unpredictable wind and wake disturbances.

Problem: How can the drone choose collision-free optimal control actions??

! Ackerman, IEEE Spectrum’ 13

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems



Safe Non-Stochastic Control Problems

Inspection and Maintenance

Goal: Inspect and repair facilities using onboard cameras.

Complication: Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions?*

1Seneviratne, Dammika, et al. Acta Imeko '18
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Safe Non-Stochastic Control Problems

Target Tracking

Goal: Minimize distance to a target that moves in a cluttered environment.

Complication: Unpredictable wind disturbances.

Problem: How can the drone choose collision-free optimal control actions??

LChen, Liu, Shen, IROS’ 16
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Safe Non-Stochastic Control of Linear Dynamical Systems

’ All above scenarios are optimal control problems with safety constraints ‘

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

T

min loss e.g., tracking error
control input

subject to system dynamics; (1)

safety constraints.
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Safe Non-Stochastic Control of Linear Dynamical Systems

’ All above scenarios are optimal control problems with safety constraints ‘

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

-
min Z Ct (Xe41, Ut) known system matrices
t=1

" o (1)

SUbjeCt to Xt4+1 = AtXt + Btut -+ W,

Xt € S, up € Uy, constraints

T~
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Safe Non-Stochastic Control of Linear Dynamical Systems

’ All above scenarios are optimal control problems with safety constraints ‘

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min

T
" Z (Xt+1, Ut) known system matrices

(1)

SubjeCt to Xt4+1 = AtXt + Btut -+ W,
xt € St & {x | Leex < Lt}
up € U & {u| Lyeu <y}

\—> polytopic constraints

for simplicity
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Safe Non-Stochastic Control of Linear Dynamical Systems

’ All above scenarios are optimal control problems with safety constraints ‘

Goal: Find control input to minimize loss subject to system dynamics and safety constraints:

min

-
A Z (Xt+1, Ue) known system matrices

/§_/7

subject to  xry1 = Arxe + Brur + wy; (1)
Xt € St = {X ‘ Lytx < /X.,t}7

us € Z/[t £ {U ‘ Lu,tu < /u,t}'

. \—> polytopic constraints
Difficulty: for simplicity
@ The noise w; can be unknown and unstructured, instead of Gaussian.
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Limitation of Classical Control Approaches

Classical control approaches can be too optimistic or
too pessimistic against unknown and unstructured noise

Hoo * Ho

(Assumes worst-case noise) (No noise assumptions) (Assumes Gaussian noise)

< >
< >

Pessimistic Ideal Optimistic
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Limitation of Classical Control Approaches

Classical control approaches can be too optimistic or
too pessimistic against unknown and unstructured noise

Hoo * Ho

(Assumes worst-case noise) (No noise assumptions) (Assumes Gaussian noise)

< >
< >

Pessimistic Ideal Optimistic

/

The ideal approach would give suboptimality guarantees against
the optimal method in hindsight for any noise realization.
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Suboptimality Metric against Optimal Control Policies in Hindsight

Definition (Dynamic Regret)

Assume a lookahead time horizon of operation T, and loss functions ¢;, t =1,..., T. Then,
dynamic regret is defined as

T T
Regret-NSC2 = Z Ct (Xe+1, Ur) — Z ce (Xey1s Uz) s (2)

t=1 t=1

where x{ and uf are the optimal trajectory and control input in hindsight given the noise
realization due to {u1,...,uT}.

Remark:

. . . - Regret-NSC? T
@ The dynamic regret is sublinear if lim1_ 4 % — 0, which implies

ct (Xeq1, Ur) — ¢ (xfq,uf) = 0as T — oo.
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Safe Non-Stochastic Control of Linear Dynamical Systems

Problem

Assume the initial state of the system is safe, i.e., xo € Sg. Ateacht=1,..., T,
@ first a control input uy € Uy is chosen;
@ then, a noise wy € R% s revealed and the system evolves to state x¢y1 € Sti1;
e the controller suffers a loss ct(x¢+1, ut).

The goal is to guarantee x;11 € Sty1 and uy € Uy for all t and that minimize

T T
D
Regret-NSC+ = Z Ct (Xet1, Ut) Z ce (Xih1, )
t=1 t=1
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Control Policy for Linear Systems

Linear-Feedback control policy:
ur = —Kexe — K x¢, where K; is to be designed such that
|Kt|| <K, —————— Compact domain set

||Ktxt” <9, ————> Bounded state

given K; that is sequentially stabilizing,? and desired £ > 0 and y > 0.

2Gradu et al., L4ADC '23
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Assumption (Bounded Noise)

we €W E {w | ||w| < W} where W is given.

Remark:

@ We assume no stochastic model for the process noise w;: the noise may even be
adversarial, subject to the bound W.

Example:

@ Wind and wake disturbances of bounded magnitude, whose evolution may not be
governed by a known stochastic model.
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Assumption (Convex and Bounded Loss Function with Bounded Gradient)

The loss function ci(xt11, ur) : R% x R% s R s convex in xz+1 and u;. Further, when ||x||
and ||u|| are bounded, then |c:(x, u)|, ||Vxce(x, u)||, and ||V ,ce(x, u)|| are also bounded.

’

Example:

o Quadratic cost ¢; (Xet1, Ur) = Xe+1 Qx4 1 + ueRu, .

Remark:

@ The above are standard assumptions in the literature of non-stochastic control.3

3Agarwal et al., ICML '19; Hazan et al., ALT '20; Li et al., AAAI '21; Zhao et al., AISTATS '22; Gradu et
al., L4DC '23; Zhou et al., CDC '23; ...

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems



Closest Related Work

Regret Optimal Control*

@ selects control inputs over a lookahead horizon;
@ guarantees satisfaction of time-varying safety constraints BUT:
@ assuming a worst-case noise.

“Goel et al., '20; Sabag et al., ACC '21; Goel et al., LADC '21; Martin et al., L4DC '22; Didier et al., L-CSS
'22; Zhou et al., CDC '23; ...
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Closest Related Work

Regret Optimal Control*
@ selects control inputs over a lookahead horizon;

@ guarantees satisfaction of time-varying safety constraints BUT:
@ assuming a worst-case noise.

Online Learning for Control®
@ selects control inputs based on past information only;

@ consider non-stochastic noise BUT:

e considers no safety constraints or
e considers time-invariant safety constraints with static regret guarantee.

“Goel et al., '20; Sabag et al., ACC '21; Goel et al., L4DC '21; Martin et al., L4DC '22; Didier et al., L-CSS
'22; Zhou et al., CDC '23; ...

5Agarwal et al., ICML '19; Hazan et al., ALT '20; Li et al., AAAI '21; Zhao et al., AISTATS '22; Gradu et
al., L4DC '23; Zhou et al., CDC '23; ...
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems



Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

At each iteration t=1,..., T:
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

At each iteration t=1,..., T:
© Output u; = —Kixy;
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.
At each iteration t=1,..., T:

© Output u; = —Kixy;

@ Observe state x; 1 and noise w; = x;11 — Arxy — By,
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.
At each iteration t=1,..., T:

© Output u; = —Kixy;

@ Observe state x; 1 and noise w; = x;11 — Arxy — By,

@ Suffer the loss ¢;(x¢41, Ut);

[The loss function ¢; (X¢et1, Ut) : R% x R% — R is convex in K. ]
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

At each iteration t=1,..., T:
© Output u; = —Kixy;
@ Observe state x; 1 and noise w; = x;11 — Arxy — By,
@ Suffer the loss ¢;(x¢41, Ut);
© Express the loss function in K; as f;(K:);
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

At each iteration t=1,..., T:
© Output u; = —Kixy;
@ Observe state x; 1 and noise w; = x;11 — Arxy — By,
@ Suffer the loss ¢;(x¢41, Ut);
© Express the loss function in K; as f;(K:);
© Obtain gradient Vf;(K:) and update = Kt — Vi f(K:);
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

At each iteration t=1,..., T:
© Output u; = —Kixy;
@ Observe state x; 1 and noise w; = x;11 — Arxy — By,
@ Suffer the loss ¢;(x¢41, Ut);
© Express the loss function in K; as f;(K:);
© Obtain gradient Vf;(K:) and update = Kt — Vi f(K:);
@ Obtain domain set /C; 1 and project Ky = Mk, ( )
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Algorithm: Safe Online Gradient Descent (Safe-OGD)

[ Safe-OGD strictly satisfies time-varying constraints with bounded dynamic regret ]

Initialisation: Time horizon T, step size 1, domain set K1, and K7 € ;3.

At each iteration t=1,..., T:
© Output u; = —Kixy;
@ Observe state x; 1 and noise w; = x;11 — Arxy — By,
@ Suffer the loss ¢;(x¢41, Ut);
© Express the loss function in K; as f;(K:);
© Obtain gradient Vf;(K:) and update = Kt — Vi f(K:);
@ Obtain domain set ;1 and project K1 = M, ( )

We guarantee x;1+1 € S¢+1 and u; € U, at each time step t by choosing K;: € K, where
Ke £ {K | = LetBeKxe < let — Ly tArxe — WLy ],
— Lu,tKXt S /u,t7 HKH S K, ||KXfH S ’Y}
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Dynamic Regret Analysis

Theorem (Dynamic Regret Bound of Safe-OGD)
Safe-OGD with step size n = O (1/ﬁ) achieves

Regret? < O (ﬁ(l +Cr+ ST)) ,

where

o Cr &2, IIK 1 — K¢|F: > Captures how fast K; changes

o St =L |IMk,(Kiy1) — Micey (Kii1)||p- ———> Captures how fast K¢ changes
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Near-Optimality Under Time-Invariant Domain Set

When IC1 = --- = K1, Safe-OGD with step size n = O (1/ﬁ) achieves:

Regret? < © (ﬁ(l + Cr —1—:5{)) .
]

—

St =0when K1 == K7 since St 2 3 [|[Mic.(Kliq) — Mic,o (Ki1)|lp
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Near-Optimality Under Time-Invariant Domain Set

When IC1 = --- = K1, Safe-OGD with step size n = O (1/ﬁ) achieves:

Regret? < © (ﬁ(l + CT)) .

Comparison with OGD
@ OGD with step size n = O (1/ﬁ) achieves the dynamic regret bound®

Regret? < © (\FT(l + C-r)> .

@ The above bound is near-optimal compared to the optimal bound Q («/ T(1+ CT)).7

6Zinkevich, ICML '03
"Zhang et al.,, NurlPS '18
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Optimality Against Time-Invariant Optimal Controller

When Ky = -+~ = K7 and K{ = -+ = K%, Safe-OGD with step size n = O (1 /ﬁ) achieves:
Regret? < © (ﬁ (1 +>{)) :
]
Cr =0 when Kf =--- = K& since C1 2 3], |Ki, — K/ |I¥
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Optimality Against Time-Invariant Optimal Controller

When Ky = -+~ = K7 and K{ = -+ = K%, Safe-OGD with step size n = O (1 /ﬁ) achieves:

Regret? < © (\FT) .

Remark:

. . . . R D
@ Safe-OGD converges asymptotically to the optimal controller since limt_ 4 eg;etT — 0.

Example:

@ In the Linear—Quadratic—Gaussian control setting,

Xe41 = Aexe + Brup + wy,

Yt = Xt,

Safe-OGD converges to the optimal linear feedback controller uy = —K*x;.
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Numerical Evaluation

Setup:
@ linear system: x;11 = Axt + Buy + wy with x; € RS and u; € R3;
|lwe|| < 0.1 sampled from various distributions;
safety constraints: —1gyx; < x; < lgx1, and [-m — 7 —20]" < u; <[7 7 20]T;

total iteration T = 500

°
°

e quadratic loss function: cy(xe41, Ur) = [|xer1® + ||lue]?;

°

@ comparison with safe H and H., with lookahead horizon N =1, 5, 10.8

K: needs to be chosen from time-varying K; even the safety constraints are time-
invariant, since Xy depends on time-varying x;, i.e.,
K¢ = {K ‘ - Lx,tBtKXt < /x,t - Lx,tAtXt - WHLx,tHy
- LU,fKXf < /U,tv HKH <K, HKXtH < ’7}'

8Anderson et al., ARC '19, Martin et al., L4DC '22
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Numerical Evaluation

Table: Comparison in terms of cumulative loss.

' N

7

N

Noise Distribution Ours > 0
H2 Hoo H2 Hoo H2 Hoo
Gaussian 44.05 || 61.81 93.44 47.96 52.03 | 30.66 48.69
Uniform 151.49 || 724.98 1859.61 331.32 323.42| 100.21 53.86
Gamma 159.21 || 811.09 2082.12 372.52 364.26| 112.90 60.77
Beta 186.98 || 836.41 2152.63 386.30 375.73| 116.70 62.40
Exponential 126.69 || 552.73 1421.90 259.82 250.76| 79.25 44.35
Weibull 195.71 || 873.09 2246.31 405.70 392.94| 122.63 65.86
Average 142,50 || 643.35 1642.67 300.60 293.19| 93.72 55.99
Standard Deviation (53.92 J| 307.00 814.06 134.16 128.60) 34.53 8.43

Lower Loss

Zhou and Tzoumas
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Numerical Evaluation

Table: Blue corresponds to best runtime; red corresponds to worse runtime.

Noise Distribution Ours N= N=
H2 Hoo H2 Hoo H2 Hoo

Average 0.1484] 0.3712 0.6429 0.6033 1.3693 | 1.3854 17.0248
Standard Deviation |0.0342) 0.0143 0.0116 0.0282 0.2741 {0.0673 0.3691

-

Faster
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Numerical Evaluation

Table: Blue corresponds to best runtime; red corresponds to worse runtime.

H2 Hoo H2 Hoo H2 Hoo

( Average 0.1484 0.3712 0.6429 0.6033 1.3693 1.3854 17.0248 )Best on Average
Standard Deviation 0.0342 0.0143 0.0116 0.0282 0.2741 0.0673 0.3691

Noise Distribution Ours

Zhou and Tzoumas Safe Non-Stochastic Control of Linear Dynamical Systems



Online learning for control algorithm that
@ guarantees safety despite non-stochastic disturbances, and

@ provides dynamic regret performance guarantees under time-varying constraints.

Next steps:
@ optimality of the regret bounds;
e recursive feasibility;®

@ safe non-linear control.®

Eric James/NASA Ames

8Zhou, and Tzoumas. Safe Non-Stochastic Control of Linear Dynamical Systems, arXiv:2308.12395
9Zhou, Song, and Tzoumas. Safe Non-Stochastic Control of Control-Affine Systems: An Online Convex
Optimization Approach, IEEE Robotics and Automation Letters (RA-L) '23
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