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Multi-Robot Coordination Problems

Environmental Monitoring Target Tracking Visual Mapping

Goal: Robots need to coordinate their actions to complete complex tasks
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Multi-Robot Coordination Problems

Environmental Monitoring Target Tracking Visual Mapping

Goal: Robots need to coordinate their actions to complete complex tasks

Challenges: Such multi-robot information-gathering tasks are challenging because:

|.  Actions of different robots have information overlap.

Il. The environment can be unpredictable.
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Xu, Lin, Tzoumas

In-Depth Look of Challenges: Target-Tracking Case

Goal: Maximize the number of moving targets tracked by the drones’ field of view
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Bandit Submodular Maximization for Multi-Robot Coordination in Unpredictable and Partially Observable Environments




Challenge 1 ( ): Compromises Actions’ Effect

Using action 1: 4 targets tracked in total Using action 2: 5 targets tracked in total
or | ot or o

To overcome Challenge |: Robots need to coordinate to minimize utility overlap
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Challenge I ( ): Compromises Ability to Evaluate Actions A Priori
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predicted target position N
actual target position

To overcome Challenge Il: Robots need to select actions based on past information only
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Current Coordination Paradigm Cannot Address the Challenges

Offline monotone submodular maximization with known environment:1
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1Atanasov; Bilmes; Bushnell; Calinescu; Chekuri; Clark; Corah; Gharesifard; Hassani; Hespanha; lyer; Karbasi; Kia; Konda; Krause; Li; Marden;
Martinez; Michael; Mirzasoleiman; Mokhtari; Pappas; Poovendran; Rezazadeh; Robey; Smith; Sundaram; Tokekar; ...
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Submodular Coordination In Environments

Problem (Online Submodular Coordination)

Given:

e time horizon T’

e robots N/

e finite action sets V;, Vi e N/

at each time step t € [T, the robots N select actions {a; +};c Ar online to solve

online feedback a; ¢ EI{}?:}\@Z EN ft( {a/iv t}i EN )

_/

where |f;| becomes known to the robots A/ only once {a; +};c A are executed
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Submodular Coordination In Environments

Problem (Online Submodular Coordination)

Given:

e time horizon T’

e robots N/

e finite action sets V;, Vi e N/

at each time step t € [T, the robots N select actions {a; +};c Ar online to solve

online feedback a; ¢ 6%1?:}@2 EN ft( {a/iv t}i EN )

_/

where |f;| becomes known to the robots A/ only once {a; +};c A are executed

Difficulty: NP-Hard to achieve approximation bound better than 1/2 even when f, is known a priori
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Our Algorithm: Online Sequential Greedy (OSG)

Step 1. Onboard algorithm FSF* samples next action a; ; from probability distribution pgi) that is computed

based on past rewards
action a; ¢

Iy

=

robot 1
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Our Algorithm: Online Sequential Greedy (OSG)

Step 2. Robot i — 1 sends actions {ay ¢,...,a;-1 +} to robot ¢

Iy

robot 7 — 1 actions {a1 ¢,...,a;-1 ¢}
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Our Algorithm: Online Sequential Greedy (OSG)

Step 3. Robot 7 sends actions {aj ¢,...,a; ¢} to robot 7 + 1

Iy

robot ¢ — 1 actions {aq ¢y...,Q;—1. ¢} actions {ai.¢,...,a; ¢} robot 7 + 1
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Our Algorithm: Online Sequential Greedy (OSG)

Step 4. Robot i computes rewards {r, ;}, <y, (marginal gains) of all alternative actions V; and feeds them
into FSF* to update p!”

¥,

| reward 7, ; (marginal gain) =
action a; ¢ ft({al,t7 .. .,Cli—l,tya}) — ft({al,ta . -7ai—1,t})

Iy

robot ¢ — 1 actions {aq ¢y...,Q;—1. ¢} actions {ai.¢,...,a; ¢} robot 7 + 1
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Performance Guarantees

Computational complexity:

Theorem 1 (Sublinear Computational Complexity)

OSG requires each robot to perform O(|V;]) function evaluation & O(logT") additions
and multiplications per time step.

o
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Performance Guarantees

Computational complexity:

Theorem 1 (Sublinear Computational Complexity)

OSG requires each robot to perform O(|V;]) function evaluation & O(logT") additions
and multiplications per time step.

y

Approximation performance:

Theorem 2 (Asymptotic 1/2 Near-Optimality™*)

OSG instructs the robots to select actions that asymptotically achieve 1/2 near-optimal
coordination as the action-selection frequency increases. )

/

Same performance as that of the near-optimal algorithm

y

Sequential Greedy for predictable environments

*Achievable in environments that cannot adapt to the action-selection frequency of the algorithm
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Simulations on Multi-Target Tracking

35
Goal: Minimize sum of distance from every target to 30-
its closest robot ;g:
15
Setup: 12:
e The robots' field of view is unlimited 0-
;. . . -5

e The targets’ future trajectories are unknown to the robots ol T

| | 30 20 -10 0 10 20 30

e Two types of target trajectories: X

Non-Adversarial Target Motion

- Non-Adversarial: Pre-defined but corrupted with

(Gaussian noise

- Adversarial: Adaptive to the robots’ motion

Compared algorithm (SG-Heuristic): A heuristic
algorithm selecting actions that 1/2 approximately

aiégj%}%@v fi—i({aitien) 0 10 20 30 40 50 60 70

X

Adversarial Target Motion
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Higher Action-Selection Frequency Improves Performance

L

§ 30

@ — Target |

@20- —— Target 2

g _

= 0 ;#\—"""I“" ' ' . '

> 0 20 40 60 80 100
Time (s)
10Hz

Minimum Distance

20 -
101

',../"'—"""'——'—/ \_\
20 40 60 80 100
Time (s)
20Hz

Minimum Distance

20 -
10

-——‘-/_——N

EE—

0

20

40 60
Time (s)

50HZz

80

100

Total Minimum Target-Robot Distance: OSG with Different Action-Selection Frequencies in Non-Adversarial Scenarios
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OSG Outperforms in Adversarial Scenarios
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Summary and Extensions

First coordination algorithm that achieves bounded suboptimality guarantee despite:

e /nformation overlap among robot actions

e completely unpredictable future environment

Extensions:

e partial information feedback
e best of both worlds

Z. Xu, X. Lin, and V. Tzoumas, “Bandit submodular maximization for multi-robot coordination in unpredictable and partially observable environments,” in Robotics: Science
and Systems, 2023
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