Online Submodular Coordination with Bounded Tracking Regret: Theory, Algorithm, and Applications to Multi-Robot Coordination

Zirui Xu, Hongyu Zhou, Vasileios Tzoumas

INIVERSITY OF MICHIGAN

Multi-Robot Coordination Problems

Environmental Monitoring

Goal: Robots need to coordinate their actions to complete complex tasks

Xu, Zhou, Tzoumas

Target Tracking

Visual Mapping

Multi-Robot Coordination Problems

Environmental Monitoring

Goal: Robots need to coordinate their actions to complete complex tasks

- **Challenges**: Such multi-robot information-gathering tasks are challenging because: Actions of different robots have information overlap.
- II. The environment can be unpredictable.

Target Tracking

Visual Mapping

In-Depth Look of Challenges: Target-Tracking Case

Goal: Maximize the number of moving targets tracked by the drones' field of view

Xu, Lin, Tzoumas

Bandit Submodular Maximization for Multi-Robot Coordination in Unpredictable and Partially Observable Environments

Challenge I (Utility Overlap): Compromises Actions' Effect

Using action 1: 4 targets tracked in total

To overcome Challenge I: Robots need to coordinate to minimize utility overlap

Xu, Zhou, Tzoumas

Challenge II (Unpredictability): Compromises Ability to Evaluate Actions A Priori

To overcome Challenge II: Robots need to select actions based on past information only

Xu, Zhou, Tzoumas

Offline monotone submodular maximization with known environment:¹

Given:

- robots ${\cal N}$
- finite action sets \mathcal{V}_i , $\forall i \in \mathcal{N}$
- set function $f: 2^{\prod_{i \in \mathcal{N}} \mathcal{V}_i} \mapsto \mathbb{R}$

the robots \mathcal{N} select actions $\{a_i\}_{i \in \mathcal{N}}$ to solve

$$a_{i} \in \mathcal{V}_{i}, \forall i \in \mathcal{N} \qquad f(\{a_{i}\}_{i \in \mathcal{N}}) < known a priori$$

¹Atanasov; Bilmes; Bushnell; Calinescu; Chekuri; Clark; Corah; Gharesifard; Hassani; Hespanha; Iyer; Karbasi; Kia; Konda; Krause; Li; Marden; Martinez; Michael; Mirzasoleiman; Mokhtari; Pappas; Poovendran; Rezazadeh; Robey; Smith; Sundaram; Tokekar; ...

Xu, Zhou, Tzoumas

Current Coordination Paradigm Cannot Address the Challenges

Submodular Coordination in Unpredictable Environments

Problem (Online Submodular Coordination) **Given**:

- time horizon T
- robots ${\cal N}$
- finite action sets \mathcal{V}_i , $\forall i \in \mathcal{N}$

non-decreasing online feedback $\max_{a_{i,t} \in \mathcal{V}_i, \forall i \in \mathcal{N}} f_t(\{a_{i,t}\}_{i \in \mathcal{N}})$ submodular

at each time step $t \in [T]$, the robots \mathcal{N} select actions $\{a_{i,t}\}_{i \in \mathcal{N}}$ online to solve where f_t becomes known to the robots \mathcal{N} only once $\{a_{i,t}\}_{i \in \mathcal{N}}$ are executed

Submodular Coordination in Unpredictable Environments

Problem (Online Submodular Coordination) **Given**:

- time horizon T
- robots ${\cal N}$

non-decreasing online feedback $\max_{a_{i,t} \in \mathcal{V}_i, \forall i \in \mathcal{N}} f_t(\{a_{i,t}\}_{i \in \mathcal{N}})$ submodular

• finite action sets \mathcal{V}_i , $\forall i \in \mathcal{N}$ at each time step $t \in [T]$, the robots \mathcal{N} select actions $\{a_{i,t}\}_{i \in \mathcal{N}}$ online to solve where f_t becomes known to the robots \mathcal{N} only once $\{a_{i,t}\}_{i \in \mathcal{N}}$ are executed

Difficulty: NP-Hard to achieve approximation bound better than 1/2 even when f_t is known a priori

Tokekar et al., IROS'14 Atanasov et al., ICRA'15 Gharesifard and Smith, TCNS'17 Grimsman et al., TCNS'18 Zhou et al., RAL'19 Corah and Michael, IROS'21 Schlotfeldt et al., TRO'21 Konda et al., ACC'22 Xu and Tzoumas, CDC'22

Nieto-Granda, IJRR'14 Alonso-Mora et al., ICRA'15 Wagner and Choset, Arti. Intel.'15 Mathew et al., TASE'15 Robin and Lacroix, AuRo'16 Gil et al., AuRo'17 Kemna et al., ICRA'17 Best et al., IJRR'19

Xu, Zhou, Tzoumas

Unpredictability

Step 1. Onboard algorithm FSF^{*} samples next action $a_{i,t}$ from probability distribution $p_t^{(i)}$ that is computed based on past rewards

Xu, Zhou, Tzoumas

Our Algorithm: Online Sequential Greedy (OSG)

Online Submodular Coordination with Bounded Tracking Regret: Theory, Algorithm, and Applications to Multi-Robot Coordination

11

Our Algorithm: Online Sequential Greedy (OSG)

Step 2. Robot i - 1 sends actions $\{a_{1,t}, \ldots, a_{i-1,t}\}$ to robot i

Xu, Zhou, Tzoumas

Our Algorithm: Online Sequential Greedy (OSG)

Step 3. Robot *i* sends actions $\{a_{1,t}, \ldots, a_{i,t}\}$ to robot i + 1

Xu, Zhou, Tzoumas

Our Algorithm: Online Sequential Greedy (OSG)

Step 4. Robot *i* computes rewards $\{r_{a,t}\}_{a \in V_i}$ (marginal gains) of all alternative actions V_i and feeds them into FSF* to update $p_t^{(i)}$

Online Submodular Coordination with Bounded Tracking Regret: Theory, Algorithm, and Applications to Multi-Robot Coordination

14

Computational complexity:

Theorem 1 (Sublinear Computational Complexity)

and multiplications per time step.

Xu, Zhou, Tzoumas

Online Submodular Coordination with Bounded Tracking Regret: Theory, Algorithm, and Applications to Multi-Robot Coordination

OSG requires each robot to perform $O(|\mathcal{V}_i|)$ function evaluation & $O(\log T)$ additions

Computational complexity:

Theorem 1 (Sublinear Computational Complexity)

and multiplications per time step.

Approximation performance:

Theorem 2 (Asymptotic 1/2 Near-Optimality*)

OSG instructs the robots to select actions that asymptotically achieve 1/2 near-optimal coordination as the action-selection frequency increases.

*Achievable in environments that cannot adapt to the action-selection frequency of the algorithm

Xu, Zhou, Tzoumas

Online Submodular Coordination with Bounded Tracking Regret: Theory, Algorithm, and Applications to Multi-Robot Coordination

OSG requires each robot to perform $O(|\mathcal{V}_i|)$ function evaluation & $O(\log T)$ additions

Same performance as that of the near-optimal algorithm Sequential Greedy for predictable environments

Goal: Minimize sum of distance from every target to its closest robot

Setup:

- The robots' field of view is unlimited
- The targets' future trajectories are unknown to the robots
- Two types of target trajectories:
 - Non-Adversarial: Pre-defined but corrupted with Gaussian noise
 - Adversarial: Adaptive to the robots' motion

Compared algorithm (SG-Heuristic): A heuristic algorithm selecting actions that 1/2 approximately

$$\max_{a_i \in \mathcal{V}_i, \forall i \in \mathcal{N}} f_{t-1}(\{a_i\}_{i \in \mathcal{N}})$$

Simulations on Multi-Target Tracking

Higher Action-Selection Frequency Improves Performance

Total Minimum Target-Robot Distance: OSG with Different Action-Selection Frequencies in Non-Adversarial Scenarios

OSG Outperforms in Adversarial Scenarios

Total Minimum Target-Robot Distance: OSG vs. SG-Heuristic in Adversarial Scenarios

Xu, Zhou, Tzoumas

First coordination algorithm that achieves **bounded suboptimality guarantee** despite:

- *information overlap* among robot actions
- *completely unpredictable* future environment

Z. Xu, X. Lin, and V. Tzoumas, "Bandit submodular maximization for multi-robot coordination in unpredictable and partially observable environments," in Robotics: Science and Systems, 2023

Xu, Zhou, Tzoumas

Summary and Extensions

Extensions:

partial information feedback

• best of both worlds

