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Motion Control Tasks that Require Accuracy and Agility

Drone Delivery Inspection & Maintenance Target Tracking

Goal: Generate control inputs to achieve agile and accurate motion control.1.2.3

Challenges: Dynamics and/or disturbances that are unknown, difficult-to-model, adaptive:

I. Drone delivery: Packages with unknown weights.
II. Inspection and maintenance. Wind, drag, ground effects.
III. Target tracking: Targets with unknown dynamics.

I Ackerman, IEEE Spectrum '13
2 Chen, L1u, Shen, IROS '16
3 Seneviratne, Dammika, et al., Acta Imeko '18
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Model Predictive Control Under Uncertainty

All above scenarios are control problems under uncertainty

Goal: Find control input to minimize a look-ahead cumulative loss:
— 2 convex
t+N—1 /

min E Cr (Tp, U .
Uty ooy UppN—1 L k (% k)/\_/rknown system dynamics
— /\/

subject to xri1 = f(xr)+ g (xr)ur + h(2x), |
- _unknown uncertainty

ur € U,
ke{t,T]\f_]_}\‘

control constraints
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Model Predictive Control Under Uncertainty

All above scenarios are control problems under uncertainty

Goal: Find control input to minimize a look-ahead cumulative loss:
— 2 convex
t+N—1 /

min E Cr (Tp, U .
Uty ooy UppN—1 L k (% k)/\_/rknown system dynamics
= /\/

subject to xri1 = f(xr)+ g (xr)ur + h(2x), |
- _unknown uncertainty

ur € U,
ke{t,T]\f_]_}\‘

control constraints

Ideally: if /() is known:

. h(-) 4

> MPC >  System Dynamics

reference trajectory control input state
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Model Predictive Control Under Uncertainty

All above scenarios are control problems under uncertainty

Goal: Find control input to minimize a look-ahead cumulative loss:
— 2 convex
t+N—1 /

min E Cr (TL, UL .
— /\/

subject to xr11 = f(xr) + g (k) ur + h (z) | |
- _estimated uncertainty

ur € U,
he (e N 1) T

estimated A (+)

control constraints

>m

> MPC >  System Dynamics

control mput

But A (-) is unknown:

reference trajectory state

A
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System Identification given a Function Basis

Assume: A function basis {® (z;,601),...,P (2, 0p)} such that:
A 1 M
h (2 a) = 7 Z D (2,0;)

1=1

Goal: Find &5, ..., an online

For appropriately chosen o and ®, and for 64, ..., 03, sampled from
appropriate distribution v, then with high probability:

[h ()= (50" |lo = O (1/VM).

61,...,05 the trained parameters
® the trained neural network model as basis functions

®(h(z)) = A® (h(z—1)) + BY (h(z—1) , )
d (-) and ¥ (-, ) given Koopman observable functions
A and B to be learned online

4Bofti et al., IMLR '22
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System Identification given a Function Basis

Assume: A function basis {® (z:,601),...,P (2, 05)} such that:
A 1 M
h (2 a) = 7 ; D (2,0;)
Goal: Find @, ..., &) online
Examples:

e Reproducing Kernels in Hilbert Spaces: Universal approximation theorem:?

For appropriately chosen o and ®, and for 6, ...,605; sampled from
appropriate distribution v, then with high probability:

[ ()= h(50%) o = O (1/V/M). TRO 1251

 Neural Networks: Similarly to above but where:

61,...,0 the trained parameters
® the trained neural network model as basis functions

e Koopman Observables: @ (h(z)) = A® (h(2i-1)) + BY (h(24-1) , 2¢)
d (-) and ¥ (-, ) given Koopman observable functions
A and B to be learned online [ACC "25]

4Bofti et al., IMLR '22
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Simultaneous System Identification and Model Predictive Control

Ateacht=1,...,T,

e estimate the unknown disturbance h (+);

\»i.e., update estimate of «

e identity a control input u; using MPC.

The goal is to minimize dynamic regret:

T T
th (Q?t,ut, th xtvuta ))
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Suboptimality Metric against Optimal Control Policies in Hindsight

Definition (Dynamic Regret)

Assume a total time horizon of operation I', and loss functions ¢;, t = 1,...,T. Then, dynamic regret is
T T
Regrety, = th (¢, ue, h( th xy,uy, h(zy)),
t=1 t=1

where 7 and u} are the optimal trajectory and control input in hindsight, and the cost ¢; depends on the
unknown disturbance h explicit.

Remark:
D
e The regret is sublinear if limp_, Reg;etT > 0, which implies ¢; (x¢, us, h(2)) — ¢ (27, ur, h(z))) — 0.
e h adapts (possibly differently) to the state and control sequences (x1,u1), ..., (z7,ur) and (z7, u}),

.., (&%, ux) since h is a function of the state and the control input.
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State of the Art

Offline Learning for Control’
e collects data offline and trains neural-networks or Gaussian-process models BUT

— data-collection can be expensive and time-consuming

— may not generalize to unseen environments

Robust Control®
e select control input over a look-ahead horizon BUT

— conservative since assuming worst-case disturbances

> Sanchez-Sanchez et al., '18; Carron et al., RAL '19; Torrente et al., RAL '21; Shi et al., ICRA '19; O’Connell, et al., SR '22; ...
6 Goel et al., '20; Sabag et al., ACC "21; Goel et al., LADC '21; Martin et al., L4DC '22; Didier et al., L-CSS 22; Zhou et al., CDC '23; ...
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State of the Art

Adaptive Control’
e estimates uncertainty and compensates control input with the estimated uncertainty BUT

— do not learn a model of uncertainty for predictive control

Non-Stochastic C()]fltrol8

e updates control input online to adapt to observed uncertainty BUT

— sensitive to tuning parameters

— do not learn a model of uncertainty for predictive control

7 Slotine, '91; Krstic, et al., '95; Ioannou et al., '96; Tal et al., TCST '20; Wu, et al., '23; Das et al., '24; Jia, et al., TRO '23: ...
8 Agarwal et al., ICML '19; Hazan et al., ALT '20; Gradu et al., L4DC '23; Zhou et al., CDC '23; Zhou et al., RAL '23; ...
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Initialization:

e Gradient descent learning rate n, number of random Fourier features M, domain set D,

Algorithm: Simultaneous Sys-ID and MPC

estimated parameter &; 1 € D;

e Randomly sample 0; ~ v and formulate ® (-, 60;), where ¢ € {1,..., M };

At each iterationt =1, ... T

1. Apply control input u; using MPC with A(-) £ N Zi\il D (-, 0;) Q4

2. Observe state x; 11, and calculate disturbance via h (z;) = x;11 — f(xy) — g(xs)uy;

3. Formulate estimation loss I; (&) = ||h (2) — + M P (2t,0;) Gt |?;

M £Lui=1

4. Calculate gradient V; 2V, i (Gy);

5. Update &}, | = &, — nVy;

6. Project &

Zhou, Tzoumas

/
(

sy onto D, de., &y =Ip(ag,, ), forie{l, ..., M}.
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No Dynamic Regret

Theorem [TRO '25]

NI

Our algorithm with n = O (1 / \/T) achieves Regrety < O (T ) .

Remark:

Regret? . ()
T 4 .

e Our algorithm converges asymptotically to the optimial controller since limp_,

Technical Assumptions:
e Lipschitzness of ¢, (-,-) and h (-).

e Stability of MPC for the estimated system.
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Simulations on Cart-Pole Stabilization with Inaccurate Model

Goal:

» Stabilize the cart-pole around the upright position of the pole
Setup:

* The model parameters (pole length & mass, cart mass) are inaccurate
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Simulations on Cart-Pole Stabilization with Inaccurate Model

Goal:

» Stabilize the cart-pole around the upright position of the pole
Setup:

* The model parameters (pole length & mass, cart mass) are inaccurate

Compared algorithms: (1) Non-stochastic MPC19 and (11) Gaussian Process MPCl!

Ours NS-MPC

10Zhou et al., RAL 23 11 Hewing et al., TCST '19
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Our Algorithm Achieves Fastest Stabilization

Sample Trajectory

Stabilization Error

Nominal MPC
NS-MPC

GP-MPC
Ours

Stabilization Error
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—— NS-MPC
GP-MPC
Ours
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Results:

e Our method achieves fastest stabilization while other algorithms:

o NS-MPC has marginal improvement over Nominal MPC

o GP-MPC has larger deviation than our method

Zhou, Tzoumas
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Simulations on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:
» Track reference trajectories with a drone

Setup:
* The system dynamics of the drone are corrupted with unknown drag effects

Circle Lemniscate Wrapped Circle

Wrapped Lemniscate

2 m
B z (m)
_ oz (m)

z (m)

O - \o} w A~
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Simulations on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:
» Track reference trajectories with a drone
Setup:

* The system dynamics of the drone are corrupted with unknown drag effects

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

sssss

Nominal MPC GP-MPC Ours

127 Torrente et al., RAL '21 13Tal et al., TCST 20
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Compared algorithms: (1) Nominal MPC, (11) Gaussian Process MPC!2, and (111) Ours w/ INDI 1nner loop!3

Ours w/ INDI
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Our Algorithm Achieves Lowest Tracking Errors

0.3 Tracking Performance with Circle Trajectory . Tracking Performance with wrapped Circle Trajectory
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Hardware on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:

» Track a circular trajectory with a drone
Setup:

* The circular trajectory 1s 1m 1in diameter
* The speed 1s 0.8 m/s

* The drone suffers from drag, voltage drop, communication delay, and:

yaRa)
||||||||
||||||
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(1) ground effect (11) wind disturbances (111) ground effect + wind disturbances



Trajectory Tracking with Ground Effect & Wind Disturbances
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Hardware on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:

* Track a circular trajectory with a drone
Setup:

* The circular trajectory 1s 1m 1in diameter
* The speed 1s 0.8 mi/s

* The drone suffers from: drag, voltage drop, communication delay, and (1) ground effect, (1) wind disturbances,
and (111) ground effect + wind disturbances

Compared algorithms: (1) Nominal MPC and (11) L1 adaptive MPC!4

14Wu et al., TCST '25
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Our Algorithm Achieves Lowest Tracking Errors

Ground Effect Wind Disturbances Ground Effect + Wind Disturbances
'i' 012 ! ' ' 007
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Results:

* Qurs achieves lower tracking errors than [L1-MPC, due to the benefit of predictive model of unknown disturbances
. crashes under ground effect & wind disturbances
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Summary and Extensions

Online control algorithm for partially unknown control-affine systems with:
* simultaneous system 1dentification and model predictive control
* no-dynamic-regret performance guarantees
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Summary and Extensions

Online control algorithm for partially unknown control-affine systems with:
* simultaneous system 1dentification and model predictive control
. performance guarantees

Extensions:

» Hybrid systems

e Active feature selection
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