Simultaneous System Identification and Model Predictive Control with No Dynamic Regret

Hongyu Zhou, Vasileios Tzoumas

Motion Control Tasks that Require Accuracy and Agility

Drone Delivery

Inspection & Maintenance

Target Tracking

Goal: Generate control inputs to achieve agile and accurate motion control. 1,2,3

Challenges: Dynamics and/or disturbances that are unknown, difficult-to-model, adaptive:

- I. Drone delivery: Packages with unknown weights.
- II. Inspection and maintenance: Wind, drag, ground effects.
- III. Target tracking: Targets with unknown dynamics.

¹ Ackerman, IEEE Spectrum '13

² Chen, Liu, Shen, IROS '16

³ Seneviratne, Dammika, et al., Acta Imeko '18

Model Predictive Control Under Uncertainty

All above scenarios are control problems under uncertainty

Goal: Find control input to minimize a look-ahead cumulative loss:

Model Predictive Control Under Uncertainty

All above scenarios are control problems under uncertainty

Goal: Find control input to minimize a look-ahead cumulative loss:

Ideally: if $h(\cdot)$ is known:

Model Predictive Control Under Uncertainty

All above scenarios are control problems under uncertainty

Goal: Find control input to minimize a look-ahead cumulative loss:

But $h(\cdot)$ is unknown:

System Identification given a Function Basis

Assume: A function basis $\{\Phi(z_t, \theta_1), \ldots, \Phi(z_t, \theta_M)\}$ such that:

$$\hat{h}\left(z_{t};\alpha\right) \triangleq \frac{1}{M} \sum_{i=1}^{M} \Phi\left(z_{t},\theta_{i}\right) \alpha_{i}$$

Goal: Find $\alpha_i, \ldots, \alpha_M$ online

Examples:

• Reproducing Kernels in Hilbert Spaces: Universal approximation theorem:4

For appropriately chosen α^* and Φ , and for $\theta_1, \ldots, \theta_M$ sampled from appropriate distribution ν , then with high probability:

$$\|h(\cdot) - \hat{h}(\cdot; \alpha^*)\|_{\infty} = \mathcal{O}\left(1/\sqrt{M}\right).$$

• Neural Networks: Similarly to above but where:

 $\theta_1, \ldots, \theta_M$ the trained parameters Φ the trained neural network model as basis functions

• Koopman Observables: $\Phi(h(z_t)) \triangleq A\Phi(h(z_{t-1})) + B\Psi(h(z_{t-1}), z_t)$ $\Phi(\cdot)$ and $\Psi(\cdot, \cdot)$ given Koopman observable functions A and B to be learned online

[ACC '25]

TRO '25]

⁴ Boffi et al., JMLR '22

System Identification given a Function Basis

Assume: A function basis $\{\Phi(z_t, \theta_1), \ldots, \Phi(z_t, \theta_M)\}$ such that:

$$\hat{h}\left(z_{t};\alpha\right) \triangleq \frac{1}{M} \sum_{i=1}^{M} \Phi\left(z_{t},\theta_{i}\right) \alpha_{i}$$

Goal: Find $\alpha_i, \ldots, \alpha_M$ online

Examples:

• Reproducing Kernels in Hilbert Spaces: Universal approximation theorem:4

For appropriately chosen α^* and Φ , and for $\theta_1, \ldots, \theta_M$ sampled from appropriate distribution ν , then with high probability:

$$\|h(\cdot) - \hat{h}(\cdot; \alpha^*)\|_{\infty} = \mathcal{O}\left(1/\sqrt{M}\right).$$

• Neural Networks: Similarly to above but where:

 $\theta_1, \ldots, \theta_M$ the trained parameters Φ the trained neural network model as basis functions

• **Koopman Observables:** $\Phi(h(z_t)) \triangleq A\Phi(h(z_{t-1})) + B\Psi(h(z_{t-1}), z_t)$ $\Phi(\cdot)$ and $\Psi(\cdot, \cdot)$ given Koopman observable functions A and B to be learned online

[ACC '25]

[TRO '25]

⁴ Boffi et al., JMLR '22

Simultaneous System Identification and Model Predictive Control

Problem

At each $t = 1, \ldots, T$,

- estimate the unknown disturbance $\hat{h}\left(\cdot\right)$;
- identify a control input u_t using MPC.

The goal is to minimize dynamic regret:

$$\sum_{t=1}^{T} c_t (x_t, u_t, h(z_t)) - \sum_{t=1}^{T} c_t (x_t^{\star}, u_t^{\star}, h(z_t^{\star})).$$

 \rightarrow i.e., update estimate of α

Suboptimality Metric against Optimal Control Policies in Hindsight

Definition (Dynamic Regret)

Assume a total time horizon of operation T, and loss functions c_t , t = 1, ..., T. Then, dynamic regret is

Regret_T^D =
$$\sum_{t=1}^{T} c_t (x_t, u_t, h(z_t)) - \sum_{t=1}^{T} c_t (x_t^*, u_t^*, h(z_t^*)),$$

where x_t^* and u_t^* are the optimal trajectory and control input in hindsight, and the cost c_t depends on the unknown disturbance h explicit.

Remark:

- The regret is sublinear if $\lim_{T\to\infty} \frac{\operatorname{Regret}_T^D}{T} \to 0$, which implies $c_t(x_t, u_t, h(z_t)) c_t(x_t^*, u_t^*, h(z_t^*)) \to 0$.
- h adapts (possibly differently) to the state and control sequences $(x_1, u_1), \ldots, (x_T, u_T)$ and $(x_1^*, u_1^*), \ldots, (x_T^*, u_T^*)$ since h is a function of the state and the control input.

State of the Art

Offline Learning for Control⁵

- collects data offline and trains neural-networks or Gaussian-process models BUT
 - data-collection can be expensive and time-consuming
 - may not generalize to unseen environments

Robust Control⁶

- select control input over a look-ahead horizon BUT
 - conservative since assuming worst-case disturbances

⁵ Sánchez-Sánchez et al., '18; Carron et al., RAL '19; Torrente et al., RAL '21; Shi et al., ICRA '19; O'Connell, et al., SR '22; ...

⁶ Goel et al., '20; Sabag et al., ACC '21; Goel et al., L4DC '21; Martin et al., L4DC '22; Didier et al., L-CSS '22; Zhou et al., CDC '23; ...

State of the Art

Adaptive Control⁷

- estimates uncertainty and compensates control input with the estimated uncertainty BUT
 - do not learn a model of uncertainty for predictive control

Non-Stochastic Control⁸

- updates control input online to adapt to observed uncertainty BUT
 - sensitive to tuning parameters
 - do not learn a model of uncertainty for predictive control

⁷ Slotine, '91; Krstic, et al., '95; Ioannou et al., '96; Tal et al., TCST '20; Wu, et al., '23; Das et al., '24; Jia, et al., TRO '23; ...

⁸ Agarwal et al., ICML '19; Hazan et al., ALT '20; Gradu et al., L4DC '23; Zhou et al., CDC '23; Zhou et al., RAL '23; ...

Algorithm: Simultaneous Sys-ID and MPC

Initialization:

- Gradient descent learning rate η , number of random Fourier features M, domain set \mathcal{D} , estimated parameter $\hat{\alpha}_{i,1} \in \mathcal{D}$;
- Randomly sample $\theta_i \sim \nu$ and formulate $\Phi(\cdot, \theta_i)$, where $i \in \{1, \ldots, M\}$;

At each iteration t = 1, ..., T:

- 1. Apply control input u_t using MPC with $\hat{h}(\cdot) \triangleq \frac{1}{M} \sum_{i=1}^{M} \Phi(\cdot, \theta_i) \hat{\alpha}_{i,t}$;
- 2. Observe state x_{t+1} , and calculate disturbance via $h(z_t) = x_{t+1} f(x_t) g(x_t)u_t$;
- 3. Formulate estimation loss $l_t(\hat{\alpha}_t) \triangleq \|h(z_t) \frac{1}{M} \sum_{i=1}^{M} \Phi(z_t, \theta_i) \hat{\alpha}_{i,t}\|^2$;
- 4. Calculate gradient $\nabla_t \triangleq \nabla_{\hat{\alpha}_t} l_t (\hat{\alpha}_t)$;
- 5. Update $\hat{\alpha}'_{t+1} = \hat{\alpha}_t \eta \nabla_t$;
- 6. Project $\hat{\alpha}'_{i,t+1}$ onto \mathcal{D} , i.e., $\hat{\alpha}_{i,t+1} = \Pi_{\mathcal{D}}(\hat{\alpha}'_{i,t+1})$, for $i \in \{1, \ldots, M\}$.

No Dynamic Regret

Theorem [TRO '25]

Our algorithm with $\eta = \mathcal{O}\left(1/\sqrt{T}\right)$ achieves $\operatorname{Regret}_T^D \leq \mathcal{O}\left(T^{\frac{3}{4}}\right)$.

Remark:

• Our algorithm converges asymptotically to the optimial controller since $\lim_{T\to\infty} \frac{\operatorname{Regret}_T^D}{T} \to 0$.

Technical Assumptions:

- Lipschitzness of $c_t(\cdot, \cdot)$ and $\hat{h}(\cdot)$.
- Stability of MPC for the estimated system.

Simulations on Cart-Pole Stabilization with Inaccurate Model

Goal:

• Stabilize the cart-pole around the upright position of the pole

Setup:

• The model parameters (pole length & mass, cart mass) are inaccurate

Simulations on Cart-Pole Stabilization with Inaccurate Model

Goal:

• Stabilize the cart-pole around the upright position of the pole

Setup:

• The model parameters (pole length & mass, cart mass) are inaccurate

¹⁰ Zhou et al., RAL '23 ¹¹ Hewing et al., TCST '19

Our Algorithm Achieves Fastest Stabilization

Sample Trajectory

Stabilization Error

Results:

- Our method achieves fastest stabilization while other algorithms:
 - NS-MPC has marginal improvement over Nominal MPC
 - GP-MPC has larger deviation than our method

Simulations on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:

• Track reference trajectories with a drone

Setup:

• The system dynamics of the drone are corrupted with unknown drag effects

Simulations on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:

• Track reference trajectories with a drone

Setup:

• The system dynamics of the drone are corrupted with unknown drag effects

Compared algorithms: (i) Nominal MPC, (ii) Gaussian Process MPC¹², and (iii) Ours w/ INDI inner loop¹³

¹² Z Torrente et al., RAL '21 ¹³ Tal et al., TCST '20

Our Algorithm Achieves Lowest Tracking Errors

Hardware on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:

• Track a circular trajectory with a drone

Setup:

- The circular trajectory is 1m in diameter
- The speed is $0.8 \, m/s$
- The drone suffers from drag, voltage drop, communication delay, and:

(i) ground effect

(ii) wind disturbances

(iii) ground effect + wind disturbances

Trajectory Tracking with Ground Effect & Wind Disturbances

Hardware on Trajectory Tracking with Unknown Aerodynamic Effect

Goal:

• Track a circular trajectory with a drone

Setup:

- The circular trajectory is 1m in diameter
- The speed is $0.8 \, m/s$
- The drone suffers from: drag, voltage drop, communication delay, and (i) ground effect, (ii) wind disturbances, and (iii) ground effect + wind disturbances

Compared algorithms: (i) Nominal MPC and (ii) L1 adaptive MPC¹⁴

¹⁴ Wu et al., TCST '25

Our Algorithm Achieves Lowest Tracking Errors

Results:

- Ours achieves lower tracking errors than L1-MPC, due to the benefit of predictive model of unknown disturbances
- Nominal MPC crashes under ground effect & wind disturbances

Summary and Extensions

Online control algorithm for partially unknown control-affine systems with:

- simultaneous system identification and model predictive control
- no-dynamic-regret performance guarantees

Summary and Extensions

Online control algorithm for partially unknown control-affine systems with:

- simultaneous system identification and model predictive control
- no-dynamic-regret performance guarantees

Extensions:

- Hybrid systems
- Active feature selection