Simultaneous System Identification and Model Predictive Control with No Dynamic Regret Hongyu Zhou, Vasileios Tzoumas # Motion Control Tasks that Require Accuracy and Agility Drone Delivery Inspection & Maintenance Target Tracking **Goal**: Generate control inputs to achieve agile and accurate motion control. 1,2,3 Challenges: Dynamics and/or disturbances that are unknown, difficult-to-model, adaptive: - I. Drone delivery: Packages with unknown weights. - II. Inspection and maintenance: Wind, drag, ground effects. - III. Target tracking: Targets with unknown dynamics. ¹ Ackerman, IEEE Spectrum '13 ² Chen, Liu, Shen, IROS '16 ³ Seneviratne, Dammika, et al., Acta Imeko '18 ## Model Predictive Control Under Uncertainty All above scenarios are control problems under uncertainty Goal: Find control input to minimize a look-ahead cumulative loss: ## Model Predictive Control Under Uncertainty ## All above scenarios are control problems under uncertainty Goal: Find control input to minimize a look-ahead cumulative loss: **Ideally**: if $h(\cdot)$ is known: ## Model Predictive Control Under Uncertainty ## All above scenarios are control problems under uncertainty Goal: Find control input to minimize a look-ahead cumulative loss: **But** $h(\cdot)$ is unknown: # System Identification given a Function Basis **Assume:** A function basis $\{\Phi(z_t, \theta_1), \ldots, \Phi(z_t, \theta_M)\}$ such that: $$\hat{h}\left(z_{t};\alpha\right) \triangleq \frac{1}{M} \sum_{i=1}^{M} \Phi\left(z_{t},\theta_{i}\right) \alpha_{i}$$ Goal: Find $\alpha_i, \ldots, \alpha_M$ online ### **Examples**: • Reproducing Kernels in Hilbert Spaces: Universal approximation theorem:4 For appropriately chosen α^* and Φ , and for $\theta_1, \ldots, \theta_M$ sampled from appropriate distribution ν , then with high probability: $$\|h(\cdot) - \hat{h}(\cdot; \alpha^*)\|_{\infty} = \mathcal{O}\left(1/\sqrt{M}\right).$$ • Neural Networks: Similarly to above but where: $\theta_1, \ldots, \theta_M$ the trained parameters Φ the trained neural network model as basis functions • Koopman Observables: $\Phi(h(z_t)) \triangleq A\Phi(h(z_{t-1})) + B\Psi(h(z_{t-1}), z_t)$ $\Phi(\cdot)$ and $\Psi(\cdot, \cdot)$ given Koopman observable functions A and B to be learned online [ACC '25] TRO '25] ⁴ Boffi et al., JMLR '22 # System Identification given a Function Basis **Assume:** A function basis $\{\Phi(z_t, \theta_1), \ldots, \Phi(z_t, \theta_M)\}$ such that: $$\hat{h}\left(z_{t};\alpha\right) \triangleq \frac{1}{M} \sum_{i=1}^{M} \Phi\left(z_{t},\theta_{i}\right) \alpha_{i}$$ Goal: Find $\alpha_i, \ldots, \alpha_M$ online ### **Examples**: • Reproducing Kernels in Hilbert Spaces: Universal approximation theorem:4 For appropriately chosen α^* and Φ , and for $\theta_1, \ldots, \theta_M$ sampled from appropriate distribution ν , then with high probability: $$\|h(\cdot) - \hat{h}(\cdot; \alpha^*)\|_{\infty} = \mathcal{O}\left(1/\sqrt{M}\right).$$ • Neural Networks: Similarly to above but where: $\theta_1, \ldots, \theta_M$ the trained parameters Φ the trained neural network model as basis functions • **Koopman Observables:** $\Phi(h(z_t)) \triangleq A\Phi(h(z_{t-1})) + B\Psi(h(z_{t-1}), z_t)$ $\Phi(\cdot)$ and $\Psi(\cdot, \cdot)$ given Koopman observable functions A and B to be learned online [ACC '25] [TRO '25] ⁴ Boffi et al., JMLR '22 # Simultaneous System Identification and Model Predictive Control #### Problem At each $t = 1, \ldots, T$, - estimate the unknown disturbance $\hat{h}\left(\cdot\right)$; - identify a control input u_t using MPC. The goal is to minimize dynamic regret: $$\sum_{t=1}^{T} c_t (x_t, u_t, h(z_t)) - \sum_{t=1}^{T} c_t (x_t^{\star}, u_t^{\star}, h(z_t^{\star})).$$ \rightarrow i.e., update estimate of α # Suboptimality Metric against Optimal Control Policies in Hindsight ## Definition (Dynamic Regret) Assume a total time horizon of operation T, and loss functions c_t , t = 1, ..., T. Then, dynamic regret is Regret_T^D = $$\sum_{t=1}^{T} c_t (x_t, u_t, h(z_t)) - \sum_{t=1}^{T} c_t (x_t^*, u_t^*, h(z_t^*)),$$ where x_t^* and u_t^* are the optimal trajectory and control input in hindsight, and the cost c_t depends on the unknown disturbance h explicit. #### Remark: - The regret is sublinear if $\lim_{T\to\infty} \frac{\operatorname{Regret}_T^D}{T} \to 0$, which implies $c_t(x_t, u_t, h(z_t)) c_t(x_t^*, u_t^*, h(z_t^*)) \to 0$. - h adapts (possibly differently) to the state and control sequences $(x_1, u_1), \ldots, (x_T, u_T)$ and $(x_1^*, u_1^*), \ldots, (x_T^*, u_T^*)$ since h is a function of the state and the control input. ## State of the Art ## Offline Learning for Control⁵ - collects data offline and trains neural-networks or Gaussian-process models BUT - data-collection can be expensive and time-consuming - may not generalize to unseen environments ## Robust Control⁶ - select control input over a look-ahead horizon BUT - conservative since assuming worst-case disturbances ⁵ Sánchez-Sánchez et al., '18; Carron et al., RAL '19; Torrente et al., RAL '21; Shi et al., ICRA '19; O'Connell, et al., SR '22; ... ⁶ Goel et al., '20; Sabag et al., ACC '21; Goel et al., L4DC '21; Martin et al., L4DC '22; Didier et al., L-CSS '22; Zhou et al., CDC '23; ... ## State of the Art ## Adaptive Control⁷ - estimates uncertainty and compensates control input with the estimated uncertainty BUT - do not learn a model of uncertainty for predictive control ## Non-Stochastic Control⁸ - updates control input online to adapt to observed uncertainty BUT - sensitive to tuning parameters - do not learn a model of uncertainty for predictive control ⁷ Slotine, '91; Krstic, et al., '95; Ioannou et al., '96; Tal et al., TCST '20; Wu, et al., '23; Das et al., '24; Jia, et al., TRO '23; ... ⁸ Agarwal et al., ICML '19; Hazan et al., ALT '20; Gradu et al., L4DC '23; Zhou et al., CDC '23; Zhou et al., RAL '23; ... # Algorithm: Simultaneous Sys-ID and MPC #### Initialization: - Gradient descent learning rate η , number of random Fourier features M, domain set \mathcal{D} , estimated parameter $\hat{\alpha}_{i,1} \in \mathcal{D}$; - Randomly sample $\theta_i \sim \nu$ and formulate $\Phi(\cdot, \theta_i)$, where $i \in \{1, \ldots, M\}$; #### At each iteration t = 1, ..., T: - 1. Apply control input u_t using MPC with $\hat{h}(\cdot) \triangleq \frac{1}{M} \sum_{i=1}^{M} \Phi(\cdot, \theta_i) \hat{\alpha}_{i,t}$; - 2. Observe state x_{t+1} , and calculate disturbance via $h(z_t) = x_{t+1} f(x_t) g(x_t)u_t$; - 3. Formulate estimation loss $l_t(\hat{\alpha}_t) \triangleq \|h(z_t) \frac{1}{M} \sum_{i=1}^{M} \Phi(z_t, \theta_i) \hat{\alpha}_{i,t}\|^2$; - 4. Calculate gradient $\nabla_t \triangleq \nabla_{\hat{\alpha}_t} l_t (\hat{\alpha}_t)$; - 5. Update $\hat{\alpha}'_{t+1} = \hat{\alpha}_t \eta \nabla_t$; - 6. Project $\hat{\alpha}'_{i,t+1}$ onto \mathcal{D} , i.e., $\hat{\alpha}_{i,t+1} = \Pi_{\mathcal{D}}(\hat{\alpha}'_{i,t+1})$, for $i \in \{1, \ldots, M\}$. # No Dynamic Regret ## Theorem [TRO '25] Our algorithm with $\eta = \mathcal{O}\left(1/\sqrt{T}\right)$ achieves $\operatorname{Regret}_T^D \leq \mathcal{O}\left(T^{\frac{3}{4}}\right)$. #### Remark: • Our algorithm converges asymptotically to the optimial controller since $\lim_{T\to\infty} \frac{\operatorname{Regret}_T^D}{T} \to 0$. #### Technical Assumptions: - Lipschitzness of $c_t(\cdot, \cdot)$ and $\hat{h}(\cdot)$. - Stability of MPC for the estimated system. ## Simulations on Cart-Pole Stabilization with Inaccurate Model #### Goal: • Stabilize the cart-pole around the upright position of the pole ## **Setup:** • The model parameters (pole length & mass, cart mass) are inaccurate ## Simulations on Cart-Pole Stabilization with Inaccurate Model #### Goal: • Stabilize the cart-pole around the upright position of the pole ## **Setup:** • The model parameters (pole length & mass, cart mass) are inaccurate ¹⁰ Zhou et al., RAL '23 ¹¹ Hewing et al., TCST '19 # Our Algorithm Achieves Fastest Stabilization #### Sample Trajectory #### **Stabilization Error** #### **Results:** - Our method achieves fastest stabilization while other algorithms: - NS-MPC has marginal improvement over Nominal MPC - GP-MPC has larger deviation than our method # Simulations on Trajectory Tracking with Unknown Aerodynamic Effect #### Goal: • Track reference trajectories with a drone ## **Setup:** • The system dynamics of the drone are corrupted with unknown drag effects # Simulations on Trajectory Tracking with Unknown Aerodynamic Effect #### Goal: • Track reference trajectories with a drone ## **Setup:** • The system dynamics of the drone are corrupted with unknown drag effects Compared algorithms: (i) Nominal MPC, (ii) Gaussian Process MPC¹², and (iii) Ours w/ INDI inner loop¹³ ¹² Z Torrente et al., RAL '21 ¹³ Tal et al., TCST '20 # Our Algorithm Achieves Lowest Tracking Errors # Hardware on Trajectory Tracking with Unknown Aerodynamic Effect #### Goal: • Track a circular trajectory with a drone ## **Setup:** - The circular trajectory is 1m in diameter - The speed is $0.8 \, m/s$ - The drone suffers from drag, voltage drop, communication delay, and: (i) ground effect (ii) wind disturbances (iii) ground effect + wind disturbances # Trajectory Tracking with Ground Effect & Wind Disturbances # Hardware on Trajectory Tracking with Unknown Aerodynamic Effect #### Goal: • Track a circular trajectory with a drone ### Setup: - The circular trajectory is 1m in diameter - The speed is $0.8 \, m/s$ - The drone suffers from: drag, voltage drop, communication delay, and (i) ground effect, (ii) wind disturbances, and (iii) ground effect + wind disturbances Compared algorithms: (i) Nominal MPC and (ii) L1 adaptive MPC¹⁴ ¹⁴ Wu et al., TCST '25 # Our Algorithm Achieves Lowest Tracking Errors #### **Results:** - Ours achieves lower tracking errors than L1-MPC, due to the benefit of predictive model of unknown disturbances - Nominal MPC crashes under ground effect & wind disturbances # Summary and Extensions Online control algorithm for partially unknown control-affine systems with: - simultaneous system identification and model predictive control - no-dynamic-regret performance guarantees # Summary and Extensions Online control algorithm for partially unknown control-affine systems with: - simultaneous system identification and model predictive control - no-dynamic-regret performance guarantees #### **Extensions:** - Hybrid systems - Active feature selection